首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1116篇
  免费   65篇
  国内免费   254篇
安全科学   94篇
废物处理   43篇
环保管理   150篇
综合类   591篇
基础理论   110篇
污染及防治   292篇
评价与监测   86篇
社会与环境   29篇
灾害及防治   40篇
  2024年   2篇
  2023年   14篇
  2022年   16篇
  2021年   41篇
  2020年   32篇
  2019年   26篇
  2018年   38篇
  2017年   37篇
  2016年   35篇
  2015年   40篇
  2014年   58篇
  2013年   83篇
  2012年   79篇
  2011年   107篇
  2010年   64篇
  2009年   87篇
  2008年   76篇
  2007年   85篇
  2006年   77篇
  2005年   45篇
  2004年   54篇
  2003年   50篇
  2002年   44篇
  2001年   29篇
  2000年   42篇
  1999年   24篇
  1998年   29篇
  1997年   23篇
  1996年   15篇
  1995年   10篇
  1994年   15篇
  1993年   20篇
  1992年   15篇
  1991年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   8篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有1435条查询结果,搜索用时 31 毫秒
81.
以实际养猪沼液为研究对象,考察分步进水间歇曝气序批式生物反应器(IASBR)在低温条件下的脱氮性能.结果表明:IASBR反应器的硝化性能临界水温为10℃,水温低于10℃时硝化性能急剧下降,水温10℃以上时氨氮去除率达到90%以上,且水温15℃以上氨氮负荷极限可达到0.30 kg·m~(-3)·d~(-1);低碳氮比(COD/TN)1.7±0.3条件下,反硝化性能临界水温为20℃,20℃以上时TN去除率可保持在80%以上,最高达90%,20℃以下时脱氮效率明显降低,出现亚硝态氮积累现象.此外,IASBR反应器脱氮除磷效率高,温度对TOC和TP去除率的影响不敏感.不排泥条件下,进水COD/TN为3.1±0.4时,TN去除率高达90%以上,TOC和TP去除率分别高达83.6%±3.9%和58.5%±17.8%;随后COD/TN降低至1.7±0.3后,TN去除率仍高达80%以上,TOC和TP去除率仅略有降低分别为77.3%±4.6%、53.1%±10.1%.  相似文献   
82.
引入钢筋和混凝土的应变率效应,利用有限元分析软件ABAQUS中的显示动力分析模块ABAQUA/Explicit,对钢筋混凝土梁在不同单调加载速率下的受力性能进行了数值模拟.通过比较不同加载速率下的分析结果,探讨了地震作用下的动态荷载对钢筋混凝土梁受力性能的影响.分析结果表明,在动态荷载作用下,钢筋混凝土梁的受力性能有显...  相似文献   
83.
在常温条件下,采用生物滴滤塔处理模拟甲硫醚废气,考察了气体空床停留时间(EBRT)、容积负荷、喷淋密度及营养液pH对生物滴滤塔性能的影响。实验结果表明:当EBRT为90 s、进气甲硫醚质量浓度为150 mg/m~3、喷淋密度为0.65 m~3/(m~2·h),营养液pH为6.8时,甲硫醚去除率为90%;容积负荷高于15 g/(m~3·h)时,对生物滴滤塔的性能产生抑制作用;EBRT为90 s及60 s时,最佳喷淋密度分别为0.56~0.65 m~3/(m~2·h)及0.65~0.75 m~3/(m~2·h);降解甲硫醚的微生物对pH的变化较敏感,最适营养液pH为6~7。  相似文献   
84.
A mechanistic semi-empirical carbon cycle model of the La Grande reservoir complex in northern Quebec, Canada was conceived in order to investigate the climate impact of such a large alteration of the continental water cycle. The model includes inputs from the drainage basin, organic matter release from flooded soils, CO2 emissions across the water-atmosphere interface and sedimentation. Most input data stems from previous research by our group on those ecosystems. The model includes the seven reservoirs of the La Grande complex and was run for periods of 50 and 100 years. Terrigeneous dissolved, particulate and suspended soil carbon fluxes and concentrations were computed. Over 100 years, 31.3 × 1012 g C are released from flooded soils, equivalent to 28-29% of inputs from the drainage basin. 40-74% of dissolved organic carbon is mineralized. CO2 fluxes over 100 years are 50.5-79.8 × 1012 g C, 46.4-67.9 × 1012 g C more than in the absence of reservoirs. The increase in mineralization of organic matter and in CO2 emissions is a result of the increase in cumulated water residence time due to the creation of the reservoirs. Changes in other carbon sinks and sources likely offset a part of this additional carbon flux to the atmosphere. In the first years following flooding of the reservoir, organic carbon release from flooded soils exceeds CO2 emissions, implying the downstream export of large quantities of eroded soil organic carbon. After this initial period, CO2 emissions are fuelled by organic carbon originating from the drainage basin.  相似文献   
85.
Increases in reactive nitrogen deposition are a growing concern in the U.S. Rocky Mountain west. The Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study was designed to improve understanding of the species and pathways that contribute to nitrogen deposition in Rocky Mountain National Park (RMNP). During two 5-week field campaigns in spring and summer of 2006, the largest contributor to reactive nitrogen deposition in RMNP was found to be wet deposition of ammonium (34% spring and summer), followed by wet deposition of nitrate (24% spring, 28% summer). The third and fourth most important reactive nitrogen deposition pathways were found to be wet deposition of organic nitrogen (17%, 12%) and dry deposition of ammonia (14%, 16%), neither of which is routinely measured by air quality/deposition networks operating in the region. Total reactive nitrogen deposition during the spring campaign was determined to be 0.45 kg ha−1 and more than doubled to 0.95 kg ha−1 during the summer campaign.  相似文献   
86.
Soil microbial populations can fluctuate in response to environmental changes and, therefore, are often used as biological indicators of soil quality. Soil chemical and physical parameters can also be used as indicators because they can vary in response to different management strategies. A long-term field trial was conducted to study the effects of different tillage systems (NT: no tillage, DH: disc harrow, and MP: moldboard plough), P fertilization (diammonium phosphate), and cattle grazing (in terms of crop residue consumption) in maize (Zea mays L.), sunflower (Heliantus annuus L.), and soybean (Glycine max L.) on soil biological, chemical, and physical parameters. The field trial was conducted for four crop years (2000/2001, 2001/2002, 2002/2003, and 2003/2004). Soil populations of Actinomycetes, Trichoderma spp., and Gliocladium spp. were 49% higher under conservation tillage systems, in soil amended with diammonium phosphate (DAP) and not previously grazed. Management practices also influenced soil chemical parameters, especially organic matter content and total N, which were 10% and 55% higher under NT than under MP. Aggregate stability was 61% higher in NT than in MP, 15% higher in P-fertilized soil, and also 9% higher in not grazed strips, bulk density being 12% lower in NT systems compared with MP. DAP application and the absence of grazing also reduced bulk density (3%). Using conservation tillage systems, fertilizing crops with DAP, and avoiding grazing contribute to soil health preservation and enhanced crop production.  相似文献   
87.
PAH concentrations have been determined in 47 seasonal snowpack samples collected in the Valbelluna valley and in the Bellunesi Dolomites National Park, in the Italian North-Eastern Alps, during the winter of 2005. The ΣPAH concentration in high-altitude alpine sites (above 1700 m) was 32 ± 20 ng/kg while in valley bottom urban areas it was 165 ± 54 ng/kg with maximum values of 290 ng/kg. The GIS mapping technique was employed to produce a PAH spatial distribution. The urbanized Valbelluna valley, and in particular the SW part, had the highest accumulation of all PAH, with values an order of magnitude more than those in rural and alpine areas. This behaviour is consistent with urban air quality data, and is due to geo-morphological and meteorological factors such as the deeper shape of the valley at the position of the town of Feltre and the low altitude of the boundary layer during the winter season.  相似文献   
88.
Lindstrom SM  White JR 《Chemosphere》2011,85(4):625-629
Treatment wetlands have a finite period of effective nutrient removal after which treatment efficiency declines. This is due to the accumulation of organic matter which decreases the capacity and hydraulic retention time of the wetland. We investigated four potential solutions to improve the soluble reactive P (SRP) removal of a municipal wastewater treatment wetland soil including; dry down, surface additions of alum or calcium carbonate and physical removal of the accreted organic soil under both aerobic and anaerobic water column conditions. The flux of SRP from the soil to the water column under aerobic conditions was higher for the continuously flooded controls (1.1 ± 0.4 mg P m−2 d−1), dry down (1.5 ± 0.9 mg P m−2 d−1) and CaCO3 (0.8 ± 0.7 mg P m−2 d−1) treatments while the soil removal and alum treatments were significantly lower at 0.02 ± 0.10 and −0.07 ± 0.02 mg P m−2 d−1, respectively. These results demonstrate that the two most effective management strategies at sequestering SRP were organic soil removal and alum additions. There are difficulties and costs associated with removal and disposal of soils from a treatment wetland. Therefore our findings suggest that alum addition may be the most cost effective and efficient means of increasing the sequestering of P in aging treatment wetlands experiencing reduced P removal rates. However, more research is needed to determine the longer term effects of alum buildup in the organic soil on the wetland biota, in particular, on the macrophytes and invertebrates. Since alum effectiveness is time limited, a longer term solution to P flux may favor the organic soil removal.  相似文献   
89.
针对交通荷载的作用特点设计了循环三轴试验,进而对交通荷载作用下饱和软粘土的动力特件进行厂研究.结果表明:循环荷载作用下,饱和软粘土存在临界循环应力比,采用孔压曲线所得到的临界循环应力比要小于采用应变曲线所得到的临界循环应力比.当土样不存在初始剪应力时,随着循环次数的增加,土样的应力-应变关系曲线近似原点对称,但随着初始剪应力的增大,应力-应变关系曲线逐渐表现为一系列平行曲线,峰值孔压与循环孔压幅值均逐渐减少;同时,轴应变的发展加快,但循环应变幅值逐渐减小.当循环应力比小于临界循环应力比时,对于同一初始剪应力,不同循环应力比下的孔压比-动应变曲线近似集中在同一条曲线上.通过对试验数据进行回归分析,得到了交通荷载作用下饱和软粘土残余孔压-累积塑性应变关系模型.  相似文献   
90.
Tuna cooking juice from a Tunisian tuna-processing unit has a high level of polluting load: chemical oxygen demand (COD) is comprised between 4 and 20 g L−1, nitrogen kjedahl (NK) between 0.6 and 3 g L−1 and dry matter between 120 and 160 g L−1. The juice has thus to be treated before being rejected into the environment. This paper considers the nanofiltration (NF) of these concentrated organic/inorganic mixtures using an AFC 30 (NF) membrane. The work focusses on the effect of organic and inorganic matters on the permeate flux and rejections of these matters. For this purpose, mixtures of salt and organic pollution (COD), used as model solutions, were prepared by the dilution of a typical industrial tuna cooking juice. The permeate flux was found to decrease when salt and organic matter concentrations increase. The recovery rate in organic matter decreases with increasing salt or organic matter content and the recovery rate of salt decreases when the COD concentration increases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号